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Abstract 

Through the analysis of volume-forms in differentiable manifolds, it is shown that the usual way 
of defining minimal action principles for field theory on curved space-times is not appropriate 
on non-riemannian manifolds. An alternative approach, based in a new volume-form, is proposed 
and confronted with the standard one. The new volume element is explicitly used in the study of 
Einstein-Cartan theory of gravity and its relation to string theory, in connection with some recent 
results on the subject. 
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This note discusses the problem of  volume definition in differentiable manifolds and 

its relation with minimal action principles. Action principles are the starting point for 

several models in Physics, and they usually are formulated in non-euclidean (non- 

minkowskian) manifolds. In an n-dimensional manifold, the action is the integral of  an 

n-form, but we can consider it as the integral of  a scalar (the dual of  an n-form) if we 

introduce a covariant volume element. Usually we have in a given coordinate system: 

S=fCdvol=f=v td°x, (1) 
where 13 is a lagrangian and dvol is the covariant volume element. The density x / ~  is 
naively introduced with the argument that it makes the euclidean volume element dnx 

covariant. 

In spite o f  the fact that it is well known that there is some arbitrariness in the definition 
of  volume elements in non-riemannian manifolds [ 1 ], the usual volume element of  ( 1 ) 
is used for them as well. This is the case, for example, when field theory is described 
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in the frame of Einstein-Cartan theory of gravity [2]. It will be shown that, for affine 

manifolds, there is a natural compatibility condition that a volume element should obey 

and that the usual one does not obey it. Such a condition will be used in order to 
construct compatible volume elements for general affine manifolds, and they will be 
used for the description of field theory on Riemann-Cartan manifolds. 

In this work, .M is an n-dimensional C ~ differentiable oriented manifold, and 
/2"(Ad) the space of differential m-forms on it. We call .M an affine manifold if it is 

endowed with a linear connection F~r, which is used to define the covariant derivative 
of tensor valued differential forms 

DH~ = d / / ~  + w~ A/ /~  - o9~ A/ /~  -- ww A/ /~ ,  (2) 

a /z where w~ = F~t~dxU, o~ = F~udx , and w is the weight o f / / ~ .  We will assume also 

that a metric tensor g~#(x)  is defined on .A4 so that 

d s 2  = gal~ ( x )  dx~" dx  ~. ( 3 ) 

The anti-symmetrical part of the affine connection S , J  = ~' (ro ' - r o), defines a new 
tensor, the torsion tensor. In an affine manifold, the linear connection can be written as 

F~,  = { ~ }  - K ~  + V~,,  (4) 

where { ~  } are the Christoffel symbols, K ~  is the contorsion tensor, 

=-soj + s ; o -  s,o , 
and V~r is given by: 

V~r  = ½ (D~g#r - Drg~fl - D#gr~) .  (6) 

For simplicity, the traces of S ~  and V~o will be denoted by S u and Vu respectively, 
S~ = Sp~, V u = VPo~. An affine manifold is called a Riemann-Cartan manifold if 
D~gBr = 0, and a riemannian one if D~gor = 0 and S,,#r = 0. In all these cases, the 

connection is said to be metric-compatible. 
The main point of our discussion, the volume element, is better described by means 

of the concept of volume-form. A volume-form on 34 is a nowhere vanishing n-form 

v E /2"(3//) [4]. A volume-form, in general, can be constructed by using n linearly 

independent 1-forms (01 A . . .  A 0" 4= 0) and non-vanishing 0-forms, 

u = f O  1 A . . . A O n. ( 7 )  

We will assume that f is a positive non-vanishing C ~ scalar function. The volume-form 
(7) defines a volume element on 3,4. If  {8 i} is assumed to be an orthonormal set of 
1-forms, one has the following expression for the volume-form in general coordinates 

(x'}: 

v = f ( x ) x / ~ l d x  I A . . .  A d x " .  (8) 
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In an affine manifold, one can require certain compatibility conditions between the 

affine connection and the volume-form. For a differentiable manifold with volume-form 

v, one usually defines the divergence of a vector field A, div A, by [ 3 ] 

(div A)v = £A U, (9) 

where £A is the Lie derivative along the direction A. However, if the manifold is endowed 

with an affine connection, we can define the divergence of a vector field in a very natural 

way by using the covariant derivative, 

divrA = DuAl .  (10) 

One can use (9) and (10) to define a criterion of compatibility between the affine 

connection and the volume-form. 

Definition 1. A volume-form v is compatible with the affine connection if 

£A v = (D~,AU)v, (11) 

for any vector field A on .M. 

One can check that the riemannian volume-form/z = v/-~ldx I A . . .  A dx" and the 

Christoffel symbols are compatible. It can be inferred also that the volume-form/~ is 

not compatible with the connection for a Riemann-Cartan manifold, 

f-A].£ -~ (DuA ~ - 2suau ) IX. (12) 

The incompatibility of the usual volume-form and the connection for non-riemannian 

manifolds introduces a new question: Is it possible to define a volume-form compatible 

with the connection for non-riemannian manifolds? The answer is that sometimes it is, 
as we will see. 

Theorem 2. An affine manifold admits a volume-form compatible with the connection 
only if the form (V# + 2S~)dx ~ is exact. 

Proof. In an affine manifold with volume-form v one has 

£av= [aI*Dl, ( f (x)vl -~i)- f -  f(x)vl~lD#za~*]dxl A . . . A d x  n, (13) 

and in order to get (11) for arbitrary A ~ one needs 

vfi77a.S(x) + S(x)a.V]77- s(x) v77r 
- (V~, + 2 S u ) f ( x ) v / ~  

= 0 ,  

which leads to 8uln f ( x )  = V~z + 2S u. 

(14) 

[] 
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The 1-form in question is closed as consequence of Poincar6's lemma. If  the form 

(V# + 2S/3)dx ~ is not closed, the affine manifold does not admit a compatible volume- 

form. The connection compatible volume-form in an affine manifold will be given by 

v = e 2 e v ~ l d x  1 A . . .  A dx n, (15) 

where OuO = S u + ½ V u, and we also have that 

FPu = Oi, ln (e2° v ~ [ )  . (16) 

For a manifold endowed with a compatible volume-form, one can define an appropriate 

divergence theorem. 

Theorem 3. I f  an affine manifold .h4 is endowed with a volume-form compatible with 

the connection, one has the following generalized Gauss formula: 

f D~,A~ dvol = f AU dZi,,  

3.4 OM 

where dZu  is the compatible surface element, given by: 

-- e20 ~ ' ~  81a.a2a3 a d x  a2 d ~ z  -(-n-- ~) i " A dxm . . . A dxa". 

This can be easily checked by choosing 

e2~V~ 
Ot 1 Ot 2 

I z -  ( n - l ) !  s'n'~2 ...... A dx A . . . A d x  ~", 

and using Stokes' theorem 

.M O3.4 

For riemannian manifolds, the connection compatible volume-form can be obtained 

by using the Hodge (*) operator. The (*) is a linear operator [4] 

* : O " 1 ( M )  + . O n - r e ( M ) ,  ( 1 7 )  

which for a Riemannian manifold has the following action on a basis vector of O m (.M): 

* ( d x  a' A d x  a2 A . . .  A d x  '~" ) 

_a,...a,, dxe,,~, 18) l~,,+~...~,, A • • • A dx ~', 
- ( n  - m )  ! 

where e,~,...,,,, is the totally anti-symmetrical symbol, and e'~'"'"ma,,+v..#, ' is constructed 
by using the inverse of the metric tensor. The action of (18) on the basis vector of 
/2 o ( .M) gives 

*1 = X / ~ e  m ~ d x  m A . . . A d x  '~', (19) 
n 
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which is the compatible volume-form for a Riemannian manifold. We can check that if 
an affine manifold .h4 admits a connection compatible volume-form, it can be obtained 
using the modified Hodge (*) operator given by 

* ( d x  '~1 A dx  '~2 A . . .  A dx  '~" ) 

e2tgv/[g[ ~' ...... d /3,,~ A A dx/3". (20) 
- ( n _ m ) !  e /3,,~r..~,, x . . .  

As the first application of these results, let us consider classical fields on Riemann- 
Caftan manifolds. If we use the usual volume dement in this case, one has a para- 

dox [5], the equations gotten by the minimal coupling [2] of the minkowskian ones 
and the Euler-Lagrange equations of the action gotten by the minimal coupling of the 
minkowskian one do not coincide. The two sets of equations will be equivalent if one 
uses the compatible volume element in the action formulation, and we will check it 
for Maxwell fields on Riemann-Cartan space-times endowed with a compatible volume 

element. 
In order to study Maxwell's equations in a metric differentiable manifold, we introduce 

the electromagnetic potential 1-form 

A = A a d x  a, (21) 

and from the potential 1-form we can define the Faraday 2-form 

F = d A  = ½Fa# dx  a A dx  ~, (22) 

where F,~t~ = O,~At~-  c~t~A,~ is the usual electromagnetic tensor. The homogeneous 
Maxwell equations arise naturally due to definition (22) as a consequence of Poincar6's 
lemma 

d F  = d ( d A )  = ½&/F,~# dx  ~/ A dx  ~ A dx  ~ = 0. (23) 

The non-homogeneous equations in Minkowski space-time are given by 

d *F = 4rr *J, (24) 

where J = J,~dx '~ is the current 1-form, and (*) is the Hodge operator in Minkowski 
space-time. *J and *F are given by: 

. 1 Ot n 
J = ~ . ea~ysJ  d x  p A dx  z' A dx  6, (25) 

*F = ¼e,,#rsF~8 dx  ~ A dx  ~. (26) 

Eq. (24) can be gotten from the minimization of the following action: 

S = - f (4~-*J A A + ½F A *F). (27) 

The action (27) can be cast in a covariant way by using the modified Hodge (*) 
operator. In this case one gets the following coordinate expression for its generally 
covariant generalization: 
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= / d4xeZ°v/-~ ( - ¼ F ~ F  ~'~ + 47rJ'~a,~). (28) S 

We can check that the equations obtained from the minimization of  (28) are the same 

we would get by casting (24) directly in a covariant way. In order to do it, we need 

to recall that *F given by (26) is not a scalar 2-form, but it is a relative scalar 2-form 

with weight - 1 ,  due to the anti-symmetrical symbol. We need to replace the exterior 

derivative in (24) by the covariant one according to (2) ,  d *F --+ D *F = d *F + w A *F. 

The use of  the compatible volume element has brought two main modifications to 

the problem of  Maxwell fields on Riemann-Cartan space-times. First, it is clear from 
(28) that gauge fields can interact with torsion without destroying gauge invariance [ 6],  

and second, there is no difference if one starts from the action formulation or from the 

equations of  motion. 

As another application, we can study the Einstein-Cartan theory of  gravity. In such 

a theory, space-time is assumed to be a Riemann-Cartan manifold [2] .  Its dynamical 

equations are gotten from a Hilbert-Einstein action, and we will consider the conse- 

quences of  the use of  the compatible volume element in it. We have 

f 
S = - ] e2°~/'-~dnx~ (29) 

= - f e 2 ° x / ~ d " x  (R + 40~00~'0 - K~p~K '~p) + surf. terms, 

where Theorem 3 was used. In (29),  ~ is the scalar of  curvature of  the Riemann- 

Cartan manifold, calculated by the contraction of  the curvature tensor obtained using 

the full connection, and R is the usual riemannian scalar of  curvature, obtained from the 

Christoffel symbols. 

The similarity between (29) and the action for the dilaton gravity [7,8] is surprising. 

The "torsion potential" O can be identified with the dilaton field, and (29) can provide 

a geometrical interpretation for the dilaton gravity [9] .  Another feature of  the proposed 

action is that, due to the peculiar O-dependence of  the action (29),  the trace of  the 

torsion tensor can propagate, i.e., there can exist non-vanishing solutions for torsion in 

the vacuum. There are several possibilities of  using the new volume element, and they 

are now under investigation. 

The author is grateful to Jos6 Carlos Brunelli and Josif Frenkel. This work was 
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